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Abstract. The properties of the underdamped Josephson junction subjected to colored noises were investi-
gated with large and small phase difference (φ). For the case of the large φ, we found numerically that: (i)
the probability distribution function of φ exhibits monostability → bistability → monostability transitions
as the autocorrelation rate (λ) of a colored noise increases; (ii) in the bistability region the multiplicative
noise drives the phase difference to turn over periodically; (iii) the slope K of the linear response of the
junction potential difference (〈V 〉) can be somewhat reduced by means of tuning an optimal λ; (iv) the
amplitude of φ in response to external sinusoidal signals changes with λ. For the case of small φ, after de-
riving the analytical expressions of the potential difference amplitude (〈V 〉max) and the K in the presence
of a dichotomous noise, we found nonmonotonic behavior of 〈V 〉max and the slope K as a function of λ.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 85.25.Cp
Josephson devices – 87.15.Aa Theory and modeling; computer simulation

1 Introduction

Much recent research work [1–3] has been devoted to
the study of Brownian particles in periodic potentials. Of
course, the study of Josephson superconducting junctions
becomes increasingly important not only because experi-
mentally it can be fabricated into a variety of supercon-
ducting devices [4,5], but also because theoretically one
can explain some phenomena by means of the methods of
statistical physics, e.g., net voltage phenomenon [6,7], E–
j relationship [8], noise-enhanced diffusion [9], V –I char-
acteristics [1,10] and so on. Yet these discussions have
been confined to overdamped circumstances. However,
two noise-induced effects, namely resonant activation and
noise-enhanced stability, were experimentally observed in
underdamped Josephson junctions [11,12] and theoreti-
cally predicted in an overdamped Josephson junction [13].

In the underdamped case, one always subjects the
Brownian particles of periodic potentials to Gaussian
white noise due to temperature [14,15]. Brownian mo-
tion of an array of harmonically coupled particles sub-
ject to a periodic substrate potential and Gaussian white
noise was studied in reference [16]. Critical hysteresis in
a tilted washboard potential driven by Gaussian white
noise was performed by Borromeo et al. [17]. We note
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that different noise sources, such as additive or multiplica-
tive noises, white or colored noises, are worth consider-
ing. References [18,6,19] take a dichotomous noise into
account to study the Josephson junction for a large range
of phase differences, and obtain many significant results.
However they also restrict the discussed models to over-
damped cases. Much less effort has been made in study-
ing the influence of colored noises on the underdamped
Josephson junction.

Stochastic resonance (SR), a phenomenon resulting
from the combination of nonlinear dynamic systems with
a random force and an external periodic signal [20], has
received much attention due to its application in biology,
physics, and chemistry [21]. The analysis of SR in linear
systems was previously restricted to an overdamped oscil-
lation with multiplicative colored noises [22]. For an un-
derdamped oscillation, reference [23] examined a bistable
potential with the Gaussian additive white noises in view
of moments, not with colored or dichotomous noises. For
an underdamped Brownian particle moving in a periodic
potential, there is no conventional SR. Due to the unbound
motion in the periodic potential, transition probability de-
cays algebraically and there is no persistent synchronized
hopping. However the noise-induced enhancement of the
diffusion constant exhibits a SR-like behavior [24].

This paper aims to address the effects of colored noises
on the underdamped Josephson junction. In Section 2 the
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properties of the Josephson junction in the case of large
phase difference φ, e.g., the stationary probability distri-
bution function (PDF) of φ, the 〈V 〉 − I characteristics
and the harmonic oscillations under different autocorrela-
tion rates of colored noises, are obtained. In Section 3 the
analytical characteristics of the Josephson junction sub-
ject to dichotomous noises in the case of small phase dif-
ference are presented. In Section 4 we give the conclusions.

2 The large phase difference case

The Josephson tunneling junction consists of two super-
conductors which are separated by a thin oxide layer [15].
If it is driven by a fixed current and an external periodic
signal, according to references [25,26], the form of the pen-
dulum equation with a sine term can be obtained:

�

2e
Cφ̈ +

�

2eR
φ̇ + J0 sin φ = I + η(t) + a sinΩt,

η̇ = −λη + λΓ (t), (1)

where η(t) and Γ (t) are Gaussian noises with zero mean,
and

〈η(t)η(t′)〉 = E2 exp(−λ | t − t′ |),
〈Γ (t)Γ (t′)〉 = 2Dδ(t − t′), (2)

where R, J0 and I are the junction resistance, the maxi-
mum Josephson current and the total current; φ and C
represent the phase difference and the capacitance be-
tween the two superconductors respectively. Overdots in
equation (1) denote derivatives with respect to time. η(t)
is modeled here by the well-known Ornstein-Uhlenbeck
process with an exponential correlation function. λ de-
notes its autocorrelation rate. The intensity of the colored
noise η(t) is equal to D/λ (i.e., E2 = D/λ), and E is a
constant. D is the intensity of Gaussian white noise Γ (t).

If environmental perturbations exist, such as pertur-
bation of the electromagnetic fields, external vibrations,
and so on, they will give rise to a fluctuation of the crit-
ical current in the Josephson junction [6]. Fluctuations
of external parameters are expressed by a multiplicative
noise [1]. As in reference [6], we describe this fluctuation
by a stochastic external parameterJ0+ση(t), in which η(t)
is the stochastic force with the same statistical properties
as in equations (2) and σ is a constant. Thus equation (1)
can be rewritten in the form:

�

2e
Cφ̈ +

�

2eR
φ̇ + J0 sin φ + (σsin φ − 1)η(t) =

I + a sin Ωt. (3)

The Fokker-Planck-equation corresponding to equa-
tion (3) is rather difficult to solve analytically even for
the stationary case without a periodic signal. But the time
evolution of the phase difference and the potential differ-
ence in equation (3) can be simulated by means of Euler
arithmetic. The time step is chosen to be small enough
to realize simulation processes as the very tiny inertial

Fig. 1. The time evolution of phase differences at different
correlation rates λ: 1017, 1013 and 106 for (a)–(c) respectively,
with E = 1, J0 = 10 A, σ = 20, C = 0.01 pF, R = 0.01 Ω,
I = 0 and a = 0. The time step is 10−18 s for (a) and (b),
10−16 s for (c).

mass of the Josephson junction results in very rapid time
evolution. The Box-Mueller algorithm is used to gener-
ate Gaussian noise from two random numbers which are
uniformly distributed over the unit interval.

2.1 The stationary probability distribution function

The time evolution of φ have been stochastically simu-
lated by means of equation (3), and the results are shown
in Figure 1. Figure 1 indicates that the colored noise af-
fects the variation of the phase difference to a large degree.
In the constant product of Dλ, the Brownian particles
are either in a “locking state” or a “running state” as λ
changes. In the “locking state” the particles are bound in
a very small range of φ, whereas in the “running state”
they cover distances of several periods in the clockwise di-
rection. In order to clearly show the characteristics of φ in
the “running state”, we simulated the angle displacement
and its PDF during 10−10 s via equation (3). Simulation
results are plotted in Figure 2. Figure 2a reflects the vari-
ation scales of φ. In terms of whether the particles are in
the locking state or in the running state, the correlation
rates are divided into three regions. In the process of sim-
ulation, we further found that: in the second region the
PDF of φ displays bistablity (see Fig. 2b). If φ is drawn
back to the range of −2π to 0, one stable state appears
near about φ = 0, and the other one near −π; in the first
region the particles are randomly either at stable state 1
(φ = 0) or stable state 2 (φ = −π); but in the third region
the particles are only at stable state 1. In other words
the particles experience the transitions of monostability
→ bistability → monostability as the autocorrelation rate
(λ) of the colored noise increases.
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Fig. 2. (a) The angle displacement during 10−10 s versus λ.
The other parameters are: E = 1, J0 = 10 A, σ = 20, C =
0.01 pF, R = 0.01 Ω, I = 0, a = 0 and 10−18 s time step. (b)
The stationary PDF of φ at λ = 1013; the other parameters
are: E = 1, J0 = 10 A, σ = 20, C = 0.01 pF, R = 0.01 Ω,
I = 0, a = 0 and 10−18 s time step.

What is the reason why the phase difference in the
second region turns over periodically? We altered the co-
efficient σ of multiplicative noises to simulate the time
evolution of φ at the “running state” as done in Figure 2,
and the results are shown in Figure 3. From Figure 3 we
found that the turnover of φ doesn’t take place as σ = 0,
and that φ turns over counterclockwise as σ = −20. Fur-
thermore, the larger the value of σ, the faster φ turns over.
It means that environmental perturbations (or multiplica-
tive noises) control the rotation direction of φ without ex-
ternal torques. The analogous phenomenon appeared in
reference [27].

As the junction capacitance increases, i.e., C = 100 pF,
the bistability regime still appears if λ takes the value of
1010 (see Fig. 4c). Yet in the case of smaller λ, φ undergoes
uniform and continuous turnover and the locking state is
lost due to the larger inertial mass (see Fig. 4d).

In equation (3), a single random variable is introduced
to reflect both environmental and thermal perturbations,
which corresponds to the strongly correlated case between
multiplicative and additive noises. In order to study the
influence of the correlation on the bistability regime, we

Fig. 3. The effect of multiplicative colored noises on the time
evolution of phase differences at λ = 1013. The other parame-
ters are the same as in Figure 1.

Fig. 4. The time evolution of phase differences at different
correlation rates λ: 1017, 1013, 1010 and 105 for (a)–(d) respec-
tively, with C = 100 pF. The other parameters are the same
as in Figure 1. These inner panels are their corresponding sta-
tionary PDF of φ.

consider two sources of colored noises

�

2e
Cφ̈+

�

2eR
φ̇+J0 sin φ+σsinφη1(t)−η2(t)=I+a sin Ωt,

η̇1 = −λη1 + λΓ1(t),
η̇2 = −λη2 + λΓ2(t),

〈ηi(t)ηi(t′)〉 = E2 exp(−λ | t − t′ |), i = 1, 2

〈ηi(t)ηj(t′)〉 = sE2 exp(−λ | t − t′ |), i, j = 1, 2, i �= j

〈Γi(t)Γj(t′)〉 = 2Dδijδ(t − t′), i, j = 1, 2 (4)

where s is the correlated strength between the two sources
of colored noise. Simulating stochastically equation (4),
we found that the bistability regime at any correlated
strength still exists and s only changes the turnover di-
rection and speed of φ (see Fig. 5).
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Fig. 5. The time evolution of phase differences at different
correlated strengths s: 0.7, 0 and −1 for (a)–(c). The other
parameter values are the same as in Figure 1b.

2.2 〈V〉 − I characteristics

In the study of the Josephson junction, a paramount phys-
ical quantity is the average potential difference across the
oxide layer of the Josephson junction, defined as:

〈V 〉 =
�

2e
〈φ̇〉. (5)

When the external torque (or the total current) I is small,
the pendulum can perform only small oscillations around
its equilibrium point, while for sufficiently large I, the pen-
dulum is able to execute complete rotations. This point is
to some extent visible in Figure 6a which comes from the
simulation of equation (3). From Figure 6a, we can see
that the threshold of I is less than J0, which differs from
that in overdamped cases. Above the threshold, the phase
difference φ can counterclockwise turn over continuously
and uniformly in a linear region, so the potential difference
varies linearly with the total current. Below the threshold,
〈V 〉 is independent of I, which is consistent with the fol-
lowing analytical result in the small phase difference case.
In order to study the effect of noise on the 〈V 〉−I charac-
teristics, the slope K of the 〈V 〉−I beeline as a function of
λ is also simulated. The results plotted in Figure 6b show
that the slope K can only be slightly reduced by properly
tuning the autocorrelation rate λ.

2.3 Harmonic oscillation

Let us next consider the case in which a small sinusoidal
periodic signal is input into the underdamped Josephson
without the external torque I. The simulated results of the
three regions in Figure 2b are shown in Figure 7. In the two
monostability regions the phase differences sine-oscillates
distinctly periodically with time in equal frequencies and
different amplitudes while the signal becomes blurred a
little in the bistablity region. It is very obvious that the

Fig. 6. (a) and (b) are the curve of 〈V 〉 − I at λ = 1014

and the relationship between the slope of the beeline 〈V 〉 − I
and λ respectively, E = 1, J0 = 10 A, σ = 20, C = 0.1 µF,
R = 0.01 Ω, a = 0 and 10−18 s time step.

Fig. 7. The time evolution of phase differences at different
correlation rates λ: 1017, 1013 and 106 for (a)–(c) respectively,
with E = 1, J0 = 10 A, σ = 20, C = 0.01 pF, R = 0.01 Ω,
I = 0, a = 1, Ω = 1013 s−1 and 10−18 s time step.

particles in the “running state” no longer rotate contin-
uously in a clockwise direction, but converge periodically
to a quasi-square wave with the largest amplitude. Thus
different autocorrelation rates produce different periodic
amplitudes. Although conventional SR does not occur in
this case due to the unbound motion in the periodic po-
tential, the phase difference amplitude is very likely to
present an SR-like behavior. This phenomena will become
more pronounced in the following small phase difference
case.

3 The small phase difference case

The most significant property of the Josephson junction
is the threshold behavior of the potential difference 〈V 〉.
Here we mainly discuss the properties of 〈V 〉 during the
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small phase difference range. Through the above analysis,
we knew that in the stationary state whether the phase
difference φ is positioned either in the stable state 1 or
in the stable state 2 makes a small sway. When the total
junction current I and the sinusoidal signal in equation (1)
are very small, the small angle approximation sinφ � φ
can be used. Thus equation (1) can be rewritten as:

�

2e
Cφ̈ +

�

2eR
φ̇ + J0φ + (σφ − 1)η(t) =

I + a sin Ωt. (6)

In order to obtain the analytical solution to equation (6),
η(t) is assumed to be a dichotomous noise, a random sta-
tionary Markovian process consisting of jumps between
two values η(t) = −E, E with equal stationary probability
1/2. There are both multiplicative and additive noises in
equation (6). Adopting the method of reference [28], first
averaging both sides of equation (6) and then using twice
the Shapino-Loginov differential formula [29], we easily get
a fourth-order differential equation for variable φ:

d4〈φ〉
dt4

+ 2
(

λ +
1

RC

)
d3〈φ〉
dt3

+
(

λ2 +
3

RC
λ

+
4eJ0

�C
+

1
R2C2

)
d2〈φ〉
dt2

+
1

RC

[
λ2 +

(
1

RC
+

4eRJ0

�

)
λ

+
4eJ0

�C

]
d〈φ〉
dt

+
[
2eJ0

�C

(
λ2 +

1
RC

λ

)

+
(

2e

�C

)2(
J2

0 − σ2E2

)]
〈φ〉 =

2ea

�C

(
λ2 +

1
RC

λ +
2eJ0

�C
− Ω2

)
sin Ωt

+
(

2λ +
1

RC

)
2eaΩ

�C
cosΩt

+
2eI

�C

(
λ2 +

1
RC

λ +
2eJ0

�C

)
−

(
2eE

�C

)2

σ. (7)

Here our aim is to look for the response of the system to
external environments. Therefore it is necessary to find
the special solution to equation (7) corresponding to the
sinusoidal signal and the external torque I.

Let

2eJ0

�C

(
λ2 +

1
RC

λ

)
+

(
2e

�C

)2

(J2
0 − σ2E2) = C1 �= 0, (8)

the solution of equation (7) can be approximated by

〈φ〉ex = A sin(Ωt + ϕ) + B. (9)

After inserting equation (9) into equation (7), the three
coefficients of equation (9) can be obtained:

A =
(

C3
4 + C2

5

C2
2 + C2

3

)1/2

,

tan ϕ =
C2C5 − C3C4

C3C5 + C2C4
,

B =
C6

C1
, (10)

where

C2 = Ω4 −
(

λ2 +
3

RC
λ +

4eJ0

�C
+

1
R2C2

)
Ω2 + C5,

C3 = −2
(

λ +
1

RC

)
Ω3

+
1

RC

[
λ2 +

(
1

RC
+

4eRJ0

�

)
λ +

4eJ0

�C

]
Ω,

C4 =
2ea

�C

(
λ2 +

1
RC

λ +
2eJ0

�C
− Ω2

)
,

C5 =
(

2λ +
1

RC

)
2eaΩ

�C
,

C6 =
2eI

�C

(
λ2 +

1
RC

λ +
2eJ0

�C

)
−

(
2eE

�C

)2

σ. (11)

So the potential difference across the oxide layer of a
Josephson junction can be expressed as

〈V 〉 =
�

2e
〈φ̇〉ex =

�ΩA

2e
cos(Ωt + ϕ)

= 〈V 〉max cos(Ωt + ϕ). (12)

The above equation indicates that the potential difference
also displays a periodic oscillation with the external signal
in equal frequency and is independent of the current I.
The slope of the small segment near the origin in Figure 6a
verifies this independence.

The amplitude a of the sinusoidal signal is equal
to 0.1 A small enough to guarantee the approximation
sinφ � φ. Using equations (10), (11) and (12), we gener-
ated curves of the relationship of 〈V 〉max with the auto-
correlation λ under various inertial masses and electrical
resistances, which are displayed in Figure 8, where 〈V 〉max

exhibits nonmonotonic behaviour. The optimal λ being
chosen, a maximum amplitude of 〈V 〉 can be obtained.
The optimal λ value increases with decreasing junction
capacitance. Yet the abscissa λ corresponding to the peak
in Figure 6b does not vary markedly with the junction
resistance R, Furthermore, the peak value of 〈V 〉 ampli-
tude almost approaches saturation after R is greater than
about 0.05 Ω.

In the other case:

C1 = 0 and a = 0, (13)

the special solution of equation (7) is assumed to be

〈φ〉ex = Qt, (14)
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Fig. 8. The amplitude of the potential difference as a function
of the logarithm of λ, J0 = 10 A, σ = 20, a = 0.1 A, Ω =
1013 s−1 and E = 1. (a) Corresponds to the amplitude of
the potential difference for different capacitance values, with
R = 0.01 Ω; (b) corresponds to that for different resistance
values, with C = 1 pF.

with

Q =
C6

C
′
1

, C
′
1 =

1
RC

[
λ2 +

(
1

RC
+

4eRJ0

�

)
λ +

4eJ0

�C

]
.

(15)
The potential difference takes the form:

〈V 〉 =
�Q

2e
= KI + 〈V 〉0, (16)

where K and 〈V 〉0 are respectively the slope and intercept
of the beeline 〈V 〉 − I. The analytical expression of K
reads:

K =
λ2 + 1

RC λ + 2eJ0
�C

λ2 + ( 1
RC + 4eRJ0

�
)λ + 4eJ0

�C

R. (17)

Fig. 9. The logarithm of the slope K of the beeline as a func-
tion of the logarithm of λ at different capacitance values for
J0 = 10 A, R = 0.01 Ω.

By means of equation (17), the nonmonotonic behavior of
K as a function of λ, under different inertial masses, is
shown in Figure 9. Choosing an optimal λ, we can obtain
a minimum value of K. The larger the junction capaci-
tance, the smaller the minimum value. The analogous re-
lation between K and λ occurs equally in the large phase
difference case (see Fig. 6b).

4 Conclusions

The effect of multiplicative colored noise on the under-
damped Josephson junction has been investigated. For
the large phase difference case, stochastic simulations were
performed, while for the small phase difference case, ana-
lytical solutions to multiplicative dichotomous noises were
derived. It is the very small inertial mass of the junction
that results in high speed time-evolution, small effective
noise intensity or extreme large effective autocorrelation.

For the case of large phase difference φ, without ex-
ternal torques and signals, the φ undergoes the transi-
tions of monostability → bistability → monostability as
the autocorrelation rate (λ) of the colored noise increases.
The rotational direction of φ in the “running state” of the
bistability region is contrilled by the coefficient of multi-
plicative colored noise. The larger inertial mass may lead
to the smaller threshold. Below the threshold of the junc-
tion total current I, the junction potential difference 〈V 〉
does not affect I. The slope of 〈V 〉 − I above the thresh-
old is reduced to some extent at an optimal autocorrela-
tion rate (λ). For the case of small phase difference φ, the
amplitude of 〈V 〉 in response to a small sinusoidal signal
exhibits a resonance-like behavior. When C1 �= 0, 〈V 〉 is
independent of I. When C1 = 0, the minimum slope of
〈V 〉 − I results from a moderate λ, and is influenced by
the Brownian inertial mass.
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